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Electromagnetic moments for arbitrary spin 

K. R. JAMES 
Department of Theoretical Physics, University of Manchester 
Communicated by S. F. Edwards; MS. received 23rd January 1968 

Abstract. A form of the Dirac equations for arbitrary spin, with minimal electro- 
magnetic coupling, is considered in the non-relativistic limit to first order in e. An 
approximate expansion of the Hamiltonian in powers of l / m  is obtained. The electric 
quadrupole moment, spin-orbit coupling and Darwin term are evaluated, and for spin 1 
are found to differ from those obtained on Proca theory. A higher approximation is 
calculated for static magnetic and electric fields. 

1. Introduction 
It has been shown (Dowker 1966 a) that minimal electromagnetic couplings may be 

introduced consistently into the conventional equations for a massive particle of spin j 
(Dirac 1936). The  analogue of the Klein-Gordon equation to first order in e appears as? 

where Fly is the electromagnetic field tensor, + is a (2j + 1)-component spinor and J,,,(j> 
are the generators of the homogeneous Lorentz group in the ( j ,  0) representation. 

This equation may be written in Hamiltonian form by a doubling of the representation 
space (Dowker 1966 b). Defining a 2(2j+ 1)-component vector by 

where 
r3  + i T 2  

J? = r3m+eV- ___ 
2m 

Here D2 = (V - ieA)2 and V is the scalar potential (the charge on the particle is + e ) .  The 
matrices are given by 

’ 7 3  = (l O) - 71 1 i“ 1 0 ’  l) 
7 2  = (0 2 1  -;I) 0 - 1  

where 1 is the (2j+ 1) x (2j+ 1) unit matrix. 
The  Coulomb scattering cross section for arbitrary spin has been calculated on the basis 

of equation (1) (Dowker 1966 b). The result for spin fr agrees with Mott’s formula, but for 
spin 1 differs from that obtained on Proca theory (see references in Dowker 1966 b, $ 5 ) .  
The question thus arises as to the difference between a ‘tensor’ particle and a ‘spinor’ 
particle, presumably to be found in their multipole structures. 

I n  the present paper we consider the non-relativistic limit of equation (2) in order to 
evaluate the multipole structure of the ‘spinor’ particle. 

t Here D, = a,-ieA’,, A P  = (A, Y )  and ti = c = 1. 
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2. Non-relativistic limit 
To find the non-relativistic limit of equation (2) we cast the wave equation into canonical 

form (Foldy 1956). The free-particle Hamiltonian is diagonalized by the transformation 
(Foldy and Wouthuysen 1950, Case 1954) 

&7f = e i S s  e-iS 

where (3) 

S = -&irl tanh-I 

Thus in the non-interacting. case 
A?’ = r3(m2 +p2)1’2 

so that each sign of the energy can be represented by a (2j+ 1)-component wave function. 
In the presence of a general electromagnetic field we cannot perform a closed transforma- 

tion on the Hamiltonian to eliminate the ‘odd’ terms (defined as those containing r1 or r2). 
We can, however, by a method of successive approximations, eliminate the ‘odd’ operators 
to any desired order in the inverse mass (Foldy and Wouthuysen 1950, Case 1954). As we 
are seeking the non-relativistic limit, this will be sufficient. It can be checked that the time- 
dependent transformation 

will perform the required eliminations on the interacting Hamiltonian? correct to order 
1 /m2. 

The resulting wave equation is 

where 

#’ = r3m+eV- 

We must now consider the non-Hermitian term ier3 J .  E/2jm, which occurs with an 
‘even’ operator in equation ( 5 )  and cannot be removed by the foregoing method. We can, 
however, make use of a special property of the Hamiltonian. Performing the transformation 
(4), where now S = (r3/2jm)J.D, we obtain 

e 
&”=r3m+el / -  

The Hamiltonian$ is now diagonalized and Hermitian to order l /m2,  except for the 
commutator involving the magnetic quantities. Part of this commutator can be written as 

[D2 ,  J.D] = D .  [D, J .D]+[D,  J . D ]  . D .  ( 7 )  
t The bars over the time derivatives indicate that these operate only on the fields: 

8% 

at 
- =  [i, HI. 

The fourth term indicates a magnetic moment of pa = e/2m. 
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Since 
[D, J .D] = -ie[V, J .A]+ie[J. V,A] = - ieJxH 

equation ( 7 )  becomes, to first order in e, 

[D2,  J . D] = - ie(V. J x H +  J x H . 0) = i e J  , (V x H - H  x V). 
On the other hand, it will be shown in equation (8) below that the remaining part of the 
commutator can be expanded as 

[ J . €3, J . V] = - +[Ii, J j ]  + m, + &iJ . (H x V - V x H). 

Hence the total non-Hermitian part of (6) is given by 

i e e 
G ; [~ ’+ : J .H  , J .D  =--{(2j-1)J.(HxV-vxE4)-i[Ji, Jj]+m,). 3 I I 8j2m2 

It can be seen that this expression vanishes as required for spin + (if we bear in mind that 
div H = 0). For higher spins, however, it does not vanish. 

The  other commutator in equation (6) (which is Hermitian) can be expanded as follows: 

[J * E, J VI = J,J,E,V,- J,J,V,E,. Since 

this becomes 
JJ ,  = H J L ,  I , ]+ ++iJJCEt3k 

[J * E ,  J *VI  = -HJv  J,]+(~,E,-E,~,)+3iJ,€,,,(E,V,+ V , E J  
- 

= - $ [ J z ,  J,]+ VtE,i-iiJ . ( E X  V - V X  E). 

We may therefore write this term of equation (6) as 

+*iJ . (Ex V-VxE)). (9) 

The  last three terms in this equation are the generalization to arbitrary spin of the 
Darwin and spin-orbit coupling terms. For spin & they reduce to the usual terms familiar 
from the theory of the electron?. The remaining expression is the electric quadrupole 
interaction$, the quadrupole tensor being given by 

This tensor, of course, vanishes for spin 8, but is non-zero for higher spins. In  the form 
conventionalized by Ramsey (1953, p. 17) the quadrupole strength Q is defined by 

Thus our particle has an electric quadrupole moment of strength 

2j -  1 Q=.cim”. 
t See, for example, Bjorken and Drell (1964) and Schweber (1961). The first reference gives the 

spin-orbit coupling in a form which is not manifestly Hermitian. 
The interaction energy is of the form (Ramsey 1953, p. 16, Preston 1965) 

Z g  = - i Q i j a .  
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For particles of spin 1 an approximate non-relativistic Hamiltonian has been obtained 
by Case (1954). Performing a series of Foldy-Wouthuysen transformations on the Sakata- 
Taketani equations, we find that the contribution of order l /m2  vanishes. A treatment using 
the most general first-order Proca Lagrangian (Young and Bludmen 1961, unpublished) 
leads to the following expressions for magnetic dipole and spin-orbit interactions : 

Here g is an arbitrary parameter. Choosing g = 1 so that Xi agrees with our result, we see 
again that the spin-orbit coupling vanishes (although a further arbitrariness remains in the 
quadrupole moment). 

These results are to be compared with our equations (6 )  and (9).  I t  can be seen that the 
electromagnetic structure of the ‘spinor’ particle is quite different from that of the Proca 
particle (even in the most general form), presumably because of the different effects of 
introducing minimal interactions in the two cases (see Taub 1939). 

3. Static magnetic and electric fields 
For the special case of a static magnetic field an exact decomposition into positive and 

negative energy states is possible (Case 1954, Dowker 1966 b). Setting E = F‘ = 0 in 
equation (2) ,  we make the transformation (3) ,  where now 

1 I 
exp(iS) = {(w + m )  + r l ( w  -m) )  2( mw)1!2 

and 
e 

J 
m 2 - D a - _ J . H  

The resulting Hamiltonian is 

which can be expanded as 
x’ = 73w 

D4 1 1 
8m3 8m3 

27‘ = r3m-r3  (E + __ + . ..) - -r8;  (% J . H +  - [ 02, J . H ] +  + ... 

displaying the relativistic corrections to kinetic energy and magnetic dipole interaction. 
Clearly there are no higher magnetic multipoles for any spin. 

For a particle in an electrostatic field (H = A = 0 in equation (2)) the appropriate 
transformation cannot be obtained in closed form. We use the method of successive 
approximations (Case 1954). The transformation (4) ,  where S = - h 3 0 / 2 m  and 0 is the 
lowest-order ‘odd’ term in the Hamiltonian, will eliminate 0 to this order. Performing a 
sequence of such transformations, we obtain, correct to order l /m4,  the diagonalized 
Hamiltonian 

The last expression can be written as 

e -  e -[V, [‘a, v]] =- v4v 32m4 3 2m4 

and is simply a higher-order (Hermitian) correction to the electrostatic energy. 
2A 
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In  order to remove the non-Hermitian terms from equation (lo), we perform a further 
transformation using S = r3J.V/2jm. The result is 

7 3  e 73 

2m 8j2m2 8m3 
2’’ N r3m+eV-- V 2 +  -[J.E, J .V]-  - V4 

ie7, ier, 
8jm3 24j m 

e -  e 
32m4 16j2m4 

e + --T--- [J  128l4m4 

+ --[V2, J . E ] + -  -- ,[J.V, [J.V, J.E]] 

+- V4V+ - [V2,  [ J .  E, J .  VI]+ 

V, [J . V, [ J  . V, J . E]]]. 

The second term from the end is Hermitian, and by comparison with equation (9) is 
clearly a relativistic correction to the ordinary quadrupole, Darwin and spin-orbit interac- 
tions. The  terms of order l /m3 are non-Hermitian, except for the kinetic energy contribu- 
tion -r3V4/8m3. Presumably these non-Hermitian terms are removable, but we are unable 
to find the appropriate transformation. However, the exponent of any such transformation 
will be of order l/m3, and provided it is simply a differential operator it will commute with 
the term of order l / m  in the Hamiltonian. Hence such a transformation will make no 
contribution to order l/m4. We therefore examine the remaining (Hermitian) term of this 
order: 

[J 9 V, [ J  V, [ J  * V , J * E]]] = J i J j J k J l  Vi V j V k E l  - J 1  JkJjJiEl V k  V j Vi 
+ J iJ IJkJ j  ViEl vk Vj  - J jJkJ i J i  V j VkEl Vi 
+JjJIJkJiVjEIVkVi-JiJkJIJiViVkEIV~ 

+JkJlJjJzVkE,VjVi-J*JjJlJkViVjE,Vk.  (12) 

From this expression we hope to obtain the electric multipole interaction of order 4, 
together with the analogue of spin-orbit coupling terms. The appropriate derivative is given 
by 

Vt’JjVkEl = [Vi, [Vi ,  [ V k ,  

= Vi V j VkEl f ViEl Vk V j + v jEi Vk vi + V k E l  V j Vi 
- E l V k V j V i -  VjVkEIVi- V i V k E l V j -  V iV jE lVk .  

On the other hand, the leading term in the multipole tensor will be a totally symmetrized 
product : 

We can permute our products into this form by means of relations such as 

whence, symmetrizing over the indices i, j ,  k, 

The extra terms generated in this equation, when substituted into equation (12), are clearly 
in the nature of ‘spin-orbit’ couplings (cf. equation (8)). 
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A series of such permutations would enable us to extract from equation (12) the leading 
product of the multipole interaction : 

The complete multipole tensor, however, will be more complicated than this, involving 
products of Kronecker deltas; we should expect, for example, that it would vanish for 
j < 2 .  

Further considerations along these lines would lead us too far astray. We merely note 
that the ‘spinor’ particle will evidently have electric moments of arbitrary order, subject to 
the invariance and group theory restrictions?. 

4. Conclusion 
The Hamiltonian for a ‘spinor’ particle in a general electromagnetic field has been 

calculated in the non-relativistic limit to order l /m2 .  The  terms of this order for spin 1 are 
found to differ from those obtained on Proca theory, even in the general form of Young 
and Bludmen (1961, unpublished). The  electric quadrupole moment, spin-orbit coupling 
and Darwin term have been evaluated for arbitrary spin. Magnetic multipoles beyond the 
first order have been seen to vanish. Electric multipoles, however, exist for any accessible 
order and have been outlined to order l /m4.  
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